par Jean Barbet | Nov 19, 2024 | Algèbre, Analyse, Fonctions, Géométrie
Introduction : fonctions holomorphes et analytiques En introduisant les fonctions holomorphes d’une variable complexe, c’est-à-dire dérivables au sens complexe, nous avons mis en lumière un exemple fondamental : celui des fonctions analytiques complexes,...
par Jean Barbet | Oct 7, 2024 | Algèbre, Analyse, Fonctions, Géométrie
Les principes fondamentaux des fonctions holomorphes d’une variable complexe exploitent la dérivabilité et les caractéristiques uniques qui définissent ces fonctions dans le plan complexe. Nous abordons la définition des sous-ensembles ouverts de $\mathbb{C},$...
par Jean Barbet | Mar 27, 2024 | Algèbre, Nombres
Les propriétés des polynômes à une indéterminée sur un corps sont analogues à celles des nombres entiers relatifs. En exploitant cette analogie à partir de la notion de polynôme irréductible, on peut en tirer des informations précieuses sur l’arithmétique des...
par Jean Barbet | Mar 7, 2024 | Algèbre, Ensembles, Fonctions, Nombres
Les fractions rationnelles à une indéterminée apparaissent à la convergence de la théorie des fonctions rationnelles et de la théorie des polynômes. En généralisant la construction des nombres rationnels à partir des nombres entiers relatifs, on les construit comme...
par Jean Barbet | Fév 9, 2024 | Algèbre, Géométrie
Le produit vectoriel représente une opération antilinéaire essentielle dans l’espace euclidien, transformant deux vecteurs en un troisième. Lorsque les deux vecteurs initiaux sont linéairement indépendants, ils forment, avec leur produit vectoriel — dont la...
par Jean Barbet | Jan 19, 2024 | Algèbre, Géométrie, Nombres
Le plan euclidien acquiert une orientation naturelle par le choix d’une base, que l’on peut qualifier de directe ou d’indirecte. Cette orientation se manifeste à travers le signe du déterminant de la base, correspondant à l’aire algébrique du...