par Jean Barbet | Août 30, 2024 | Analyse, Fonctions
La notion de limite est la base de l’analyse réelle, c’est-à-dire de la théorie des fonctions à valeurs dans l’ensemble $\mathbb R$ : elle permet entre autres de définir les notions de continuité et de dérivation des fonctions d’une variable...
par Jean Barbet | Juin 29, 2024 | Analyse, Cinématique, Géométrie
Dans la géométrie différentielle, l’analyse réelle et la géométrie euclidienne convergent vers une description infinitésimale des objets géométriques naturels, qui permet d’en étudier avec précision certains paramètres standard. Nous commençons avec...
par Jean Barbet | Juin 18, 2024 | Analyse, Fonctions
Les propriétés de l’analyse des fonctions d’une variable réelle sont celles qui sont associées à la structure de la droite réelle. L’ordre entre nombres réels, représentation de l’ordre entre les grandeurs naturelles, est l’élément...
par Jean Barbet | Avr 30, 2024 | Analyse, Ensembles, Nombres
L’ensemble des nombres réels, quelle que soit la manière dont il est présenté, défini ou construit, n’est pas une multiplicité « amorphe », mais il vient avec une « structure » naturelle, héritée en dernière analyse de la structure arithmétique de...
par Jean Barbet | Avr 11, 2024 | Analyse, Fonctions
Quelle est l’opération inverse de la dérivée d’une fonction ? Une première réponse à cette question consiste à intégrer une fonction qu’on veut pouvoir considérer comme dérivée, afin d’en construire une primitive. Cette problématique conduit...
par Jean Barbet | Jan 8, 2021 | Analyse, Fonctions
A partir de la fonction exponentielle complexe, on peut définir une fonction « exponentielle circulaire », qui « enroule » la droite réelle sur le cercle trigonométrique, et permet de définir rigoureusement les fonctions trigonométriques cosinus et sinus, qui...