par Jean Barbet | Déc 2, 2024 | Ensembles, Logique, Nombres
Nous explorons la fondation de l’arithmétique naturelle en partant des axiomes de Peano au sein de la théorie des ensembles, révélant une approche innovante pour conceptualiser les nombres entiers naturels. Nous questionnons l’usage traditionnel des...
par Jean Barbet | Nov 19, 2024 | Algèbre, Analyse, Fonctions, Géométrie
Introduction : fonctions holomorphes et analytiques En introduisant les fonctions holomorphes d’une variable complexe, c’est-à-dire dérivables au sens complexe, nous avons mis en lumière un exemple fondamental : celui des fonctions analytiques complexes,...
par Jean Barbet | Oct 7, 2024 | Algèbre, Analyse, Fonctions, Géométrie
Les principes fondamentaux des fonctions holomorphes d’une variable complexe exploitent la dérivabilité et les caractéristiques uniques qui définissent ces fonctions dans le plan complexe. Nous abordons la définition des sous-ensembles ouverts de $\mathbb{C},$...
par Jean Barbet | Août 30, 2024 | Analyse, Fonctions
La notion de limite est la base de l’analyse réelle, c’est-à-dire de la théorie des fonctions à valeurs dans l’ensemble $\mathbb R$ : elle permet entre autres de définir les notions de continuité et de dérivation des fonctions d’une variable...
par Jean Barbet | Juin 29, 2024 | Analyse, Cinématique, Géométrie
Dans la géométrie différentielle, l’analyse réelle et la géométrie euclidienne convergent vers une description infinitésimale des objets géométriques naturels, qui permet d’en étudier avec précision certains paramètres standard. Nous commençons avec...