par Jean Barbet | Juin 29, 2024 | Analyse, Cinématique, Géométrie
Dans la géométrie différentielle, l’analyse réelle et la géométrie euclidienne convergent vers une description infinitésimale des objets géométriques naturels, qui permet d’en étudier avec précision certains paramètres standard. Nous commençons avec...
par Jean Barbet | Fév 9, 2024 | Algèbre, Géométrie
Le produit vectoriel représente une opération antilinéaire essentielle dans l’espace euclidien, transformant deux vecteurs en un troisième. Lorsque les deux vecteurs initiaux sont linéairement indépendants, ils forment, avec leur produit vectoriel — dont la...
par Jean Barbet | Jan 19, 2024 | Algèbre, Géométrie, Nombres
Le plan euclidien acquiert une orientation naturelle par le choix d’une base, que l’on peut qualifier de directe ou d’indirecte. Cette orientation se manifeste à travers le signe du déterminant de la base, correspondant à l’aire algébrique du...
par Jean Barbet | Déc 22, 2023 | Cinématique, Géométrie
L’approche mathématique de la physique s’initie souvent par la description du mouvement. Cette démarche s’appuie sur la conceptualisation du mouvement en tant que variation de position en fonction du temps, ce qui conduit à sa modélisation comme une...
par Jean Barbet | Nov 29, 2023 | Algèbre, Géométrie, Trigonométrie
Le produit scalaire et le déterminant sont des concepts clés de l’algèbre linéaire dans le plan euclidien, offrant une compréhension profonde des relations entre deux vecteurs $u$ et $v$. Lorsque ces vecteurs sont unitaires, leur produit scalaire et déterminant...
par Jean Barbet | Août 6, 2023 | Géométrie, Trigonométrie
Introduction Dans Produit scalaire et loi des cosinus, nous avons montré à partir des angles orientés comment l’interprétation trigonométrique du produit scalaire de deux vecteurs conduisait à une généralisation du théorème de Pythagore, la « loi des cosinus »...