par Jean Barbet | Mar 24, 2021 | Géométrie
La méthode analytique de Descartes, qui permet de représenter le plan euclidien comme le produit cartésien \(\mathbb R^2\) grâce à la théorie des nombres réels, permet également de représenter l’espace euclidien comme le produit cartésien \(\mathbb R^3=\mathbb...
par Jean Barbet | Fév 12, 2021 | Algèbre, Géométrie
Introduction Dans Angles de vecteurs : intuition géométrique et définition algébrique, nous avons défini et décrit le groupe des angles de vecteurs du plan euclidien de manière algébrique, en utilisant une relation d’équivalence sur les vecteurs unitaires. De...
par Jean Barbet | Fév 5, 2021 | Géométrie
Les angles de vecteurs sont les angles orientés habituels de la géométrie euclidienne plane. Grâce aux ressources de la théorie naïve des ensembles, on les définit de manière purement algébrique grâce à une relation d’équivalence et aux rotations vectorielles du...
par Jean Barbet | Oct 3, 2020 | Géométrie
Le produit scalaire de deux vecteurs dans un espace réel est un nombre réel qui tient compte de la direction, du sens et de l’amplitude des deux vecteurs. 1.Le produit scalaire naturel dans le plan euclidien 1.1.De la distance entre deux points au produit...
par Jean Barbet | Juil 5, 2020 | Fonctions, Géométrie
La définition d’un cercle est simple : il s’agit d’un ensemble de points situés à une même distance d’un point donné. Cette distance est appelée le rayon et ce point le centre du cercle. Le cercle de centre \((-1,-\frac 3 2)\) et de rayon...