par Jean Barbet | Juil 3, 2023 | Algèbre, Géométrie
Comme dans le plan euclidien $\mathbb R^2$ , il existe dans l’espace euclidien $\mathbb R^3$ une infinité de bases ou « systèmes de représentation » des vecteurs : l’espace étant intuitivement de dimension 3, ces bases sont toujours formées de 3 vecteurs...
par Jean Barbet | Avr 21, 2023 | Algèbre, Géométrie
L’approche analytique de la géométrie plane, que nous devons à Descartes, permet de donner une description purement algébrique des droites du plan comme ensembles de solutions d’équations d’un seul type. Ces équations dites cartésiennes contiennent...
par Jean Barbet | Mai 7, 2021 | Algèbre, Géométrie
La représentation du plan euclidien par le produit cartésien \(\mathbb R^2\) permet de décomposer tout vecteur du plan en deux coordonnées, son abscisse et son ordonnée. Cette décomposition est liée à un « système de représentation » particulier et naturel,...
par Jean Barbet | Mar 24, 2021 | Géométrie
La méthode analytique de Descartes, qui permet de représenter le plan euclidien comme le produit cartésien \(\mathbb R^2\) grâce à la théorie des nombres réels, permet également de représenter l’espace euclidien comme le produit cartésien \(\mathbb R^3=\mathbb...
par Jean Barbet | Jan 25, 2021 | Algèbre, Géométrie
Les rotations vectorielles du plan (c’est-à-dire centrées en l’origine), se dérivent de manière analytique (par coordonnées) comme applications linéaires inversibles de déterminant \(1\), ce qui permet de les caractériser intégralement et de les identifier...