by Jean Barbet | Jul 9, 2023 | Logic, Number Theory, Set Theory
Natural arithmetic is the science of natural numbers: it is based on addition, multiplication, natural order and divisibility. Now, all these operations and relations are defined on the basis of the single successor function, whose properties are brought together in...
by Jean Barbet | Mar 25, 2021 | Algebra, Geometry, Non classé, Number Theory
Descartes’ analytical method, which allows the Euclidean plane to be represented as the Cartesian product $ \mathbb{R}^2 $ through the theory of real numbers, also makes it possible to represent Euclidean space as the Cartesian product $ \mathbb{R}^3 =...
by Jean Barbet | Mar 20, 2021 | Algebra, Geometry, Non classé, Number Theory
The complex multiplication naturally extends to a multiplication in four dimensions, which defines on the space $ \mathbb{R}^4 $ the structure of the algebra $ \mathbb{H} $ of Hamilton’s quaternions. This multiplication can be interpreted geometrically using the...
by Jean Barbet | Mar 12, 2021 | Algebra, Non classé, Number Theory
Gaussian integers are complex numbers with integer coordinates. Thanks to their norm, a kind of integer measure of their size, we can describe some of their arithmetic properties. In particular, we can determine which are the usual prime numbers that...
by Jean Barbet | Feb 20, 2021 | Functions, Number Theory
Introduction When we introduced the circular exponential, the trigonometric functions cosine and sine were defined as its real part and imaginary part. From this, we derived the analytical expressions: \(\cos x=\sum_{n=0}^{+\infty} (-1)^n\dfrac{x^{2n}}{(2n)!}\) and...
by Jean Barbet | Dec 16, 2020 | Non classé, Number Theory, Set Theory
The prime natural numbers are those which have no divisors other than 1 and themselves. They exist in infinite number by Euclid’s theorem, which is not difficult to prove. 1.Prime numbers 1.1.Divisors and primes A prime number is a non-zero natural number (see...