by Jean Barbet | May 23, 2021 | Algebra, Geometry

The linear transformations of the Euclidean plane are the invertible linear applications, i.e. of non-zero determinant. They allow us to move from one basis of the plane to another, and the orthogonal transformations, i.e. the vectorial isometries, exchange the...
by Jean Barbet | May 8, 2021 | Algebra, Geometry, Non classé

The representation of the Euclidean plane as the Cartesian product \(\mathbb R^2\) allows us to decompose any vector of the plane into two coordinates, its abscissa and its ordinate. This decomposition is linked to a particular and natural “representation...
by Jean Barbet | Mar 12, 2021 | Algebra, Non classé, Number Theory

Gaussian integers are complex numbers with integer coordinates. Thanks to their norm, a kind of integer measure of their size, we can describe some of their arithmetic properties. In particular, we can determine which are the usual prime numbers that...
by Jean Barbet | Oct 4, 2020 | Algebra, Geometry

The scalar or dot product of two vectors in real space is a real number that takes into account the direction, sense and magnitude of both vectors. 1.The natural scalar product in the Euclidean plane 1.1.From the distance between two points to the scalar product In...
by Jean Barbet | Sep 16, 2020 | Algebra, Functions, Non classé

Polynomials with one variable are mathematical representations of the expressions used in polynomial equations. They allow algebraic methods to be applied to solving these equations. 1. Equations are “linguistic” objects 1.1 Polynomial equations and number...