par Jean Barbet | Oct 19, 2021 | Nombres
Les tragédies grecques existaient aussi chez les mathématiciens de l’Antiquité. La découverte de la racine carrée du nombre 2 est le sujet de l’une d’entre elles, qui a trouvé une fin heureuse à l’époque moderne. Un disciple de Pythagore...
par Jean Barbet | Mar 11, 2021 | Algèbre, Nombres
Les entiers de Gauss sont les nombres complexes à coordonnées entières. Grâce à leur norme, sorte de mesure entière de leur taille, on peut décrire certaines de leurs propriétés arithmétiques. En particulier, on peut effectuer des divisions euclidiennes et déterminer...
par Jean Barbet | Fév 19, 2021 | Fonctions, Nombres
Introduction Lorsque nous avons introduit l’exponentielle circulaire, les fonctions trigonométriques cosinus et sinus ont été définies comme sa partie réelle et sa partie imaginaire. Nous en avons alors tiré les expressions analytiques : \(\cos...
par Jean Barbet | Déc 15, 2020 | Nombres
Les nombres entiers naturels premiers sont sont ceux qui n’ont pas d’autres diviseurs que 1 et eux-mêmes. Ils existent en nombre infini par le théorème d’Euclide, qui n’est pas difficile à démontrer. Les nombres premiers Diviseurs et nombres...
par Jean Barbet | Nov 19, 2020 | Nombres
L’intuition des nombres rationnels Les nombres rationnels, c’est-à-dire « fractionnaires », comme \(-\frac 1 2, \frac{27}{4}, \frac{312}{-6783},\ldots\), forment un ensemble intuitif qu’on note \(\mathbb Q\). C’est une extension de...
par Jean Barbet | Nov 9, 2020 | Nombres
Les nombres entiers relatifs sont une extension des nombres entiers naturels où l’existence d’une soustraction fournit un cadre mieux approprié à certaines questions d’arithmétique. On peut les décrire de manière axiomatique, mais aussi les...